Air pollution and Tuberculosis

Denise Felber Dietrich, MD, PhD, MPH
Institute of Social and Preventive Medicine, University of Basel
18. Tuberkulosesymposium Münchenwiler
26. März 2009
Rationale

Many studies have found an association between tobacco smoking and Tb
Air pollution

- Tobacco smoking
- Passive smoking
- Indoor Air pollution
- Ambient Air pollution
State of knowledge: Passive smoking

<table>
<thead>
<tr>
<th>Study*</th>
<th>Country</th>
<th>Sample size</th>
<th>Odds ratio (95% CI)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipayamongkholgul (2005)</td>
<td>Thailand</td>
<td>130/130</td>
<td>9.31 (3.14, 27.58)</td>
<td></td>
</tr>
<tr>
<td>Altet (1996)</td>
<td>Spain</td>
<td>93/95</td>
<td>5.39 (2.44, 11.91)</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ariyothai (2004)</td>
<td>Thailand</td>
<td>100/100</td>
<td>2.37 (0.94, 6.01)</td>
<td></td>
</tr>
<tr>
<td>Alcaide (1996)</td>
<td>Spain</td>
<td>46/46</td>
<td>2.50 (1.00, 6.20)</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2=41.3\%$

Note: The horizontal axis is on log scale

*All studies are case control studies

Lin HH et al., PLoS Medicine, 2007
State of knowledge: Indoor air pollution

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Sample size</th>
<th>Odds ratio (95% CI)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shetty (2006)</td>
<td>India</td>
<td>189/189</td>
<td>0.90 (0.46, 1.76)</td>
<td></td>
</tr>
<tr>
<td>Crampin (2004)</td>
<td>Malawi</td>
<td>598/992</td>
<td>0.60 (0.30, 1.10)</td>
<td></td>
</tr>
<tr>
<td>Perez-Padilla (2001)</td>
<td>Mexico</td>
<td>288/545</td>
<td>2.20 (1.10, 4.20)</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: $i^2=74.1%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross sectional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mishra (1999)</td>
<td>India</td>
<td>2,034/260,162</td>
<td>2.58 (1.98, 3.37)</td>
<td></td>
</tr>
<tr>
<td>Gupta (1997)</td>
<td>India</td>
<td>NR/707</td>
<td>2.54 (1.07, 6.04)</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: $i^2=0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The horizontal axis is on log scale

Lin HH et al., PLoS Medicine, 2007
State of knowledge: Ambient Air pollution

<table>
<thead>
<tr>
<th>Author, Date</th>
<th>Population</th>
<th>Geographical location</th>
<th>Exposure</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>?, 2008</td>
<td></td>
<td>Russia (Amur)</td>
<td>Ambient air pollution, mercury-containing pesticides, emission of metallic mercury at gold mining</td>
<td>No association found</td>
</tr>
<tr>
<td>Reid A, 2008</td>
<td>2552 women, residents of blue asbestos mining and milling townships, not involved in mining or milling</td>
<td>Wittenomm, Western Australia</td>
<td></td>
<td>SMR = 5.38 (0.14-30.0)</td>
</tr>
</tbody>
</table>
Evidence of causal relationship

- Dose-response relationship
- Biological plausibility
Mechanisms
1st level of host defense

• Impairment of the normal clearance of secretions on the tracheobronchial mucosal surface
Mechanisms
2nd level of host defense

• Reduced activity of
 – Alveolar macrophages
 – Dendritic cells
 – Natural killer cells
Mechanisms
Pulmonary Alveolar Macrophages (1)

• Reduced adherence to surfaces
• Reduced phagocytic ability
• Lower level of secreted proinflammatory cytokines
Mechanisms
Pulmonary Alveolar Macrophages (2)

• Elevated iron content
 - Iron overload impairs defense against intracellular microorganisms through reduced production of TNF and NO
Mechanisms
Pulmonary Alveolar Macrophages (3)

• Action on nicotinic acetylcholine receptors
 ➢ Decreased TNF-a
 ➢ Impairment of intracellular killing of M. tuberculosis
Intervention studies

- Effect of smoking cessation of household members on TB treatment outcomes?
A modelling study

- Complete cessation of smoking and solid-fuel use by 2033 would reduce the projected annual tuberculosis incidence in 2033 by
 - 14-52% if 80% DOTS coverage is sustained
 - 27-62% if 50% coverage is sustained
 - 33-71% if 20% coverage is sustained

Lin HH et al., Lancet, 2008
Conclusions

• Exposure to respirable pollutants (tobacco and biomass fuels) increases the risk of both TB infection and TB disease

➢ Policy implications